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ABSTRACT: In this paper, we present a new fixed point iterative method for solving nonlinear functional equations and 

analyzed. The new fixed point iterative method has convergence of order two. The new fixed point iterative method converges 

faster than the fixed point method. The comparison table demonstrates the faster convergence of new fixed point method. 
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1 INTRODUCTION 
The problem, to recall, is solving equations in one variable. 

We are given a function f and would like to find atleast one 

solution of the equation f(x)=0. Note that, we do not put any 

restrictions on the function f; we need to be able to evaluate 

the function; otherwise, we cannot even check that a given 

x=  is true, that is f(r)=0. In reality, the mere ability to be 

able to evaluate the function does not suffice. We need to 

assume some kind of "good behavior". The more we assume, 

the more potential we have, on the one hand, to develop fast 

iteration scheme for finding the root. At the same time, the 

more we assume, the fewer the functions are going to satisfy 

our assumptions!  This is a fundamental paradigm in 

numerical analysis. 

We know the fundamental algorithm for solving nonlinear 

equations is so-called fixed point iteration method [1]. 

In the fixed-point iteration method for solving nonlinear 

equation f(x)=0, the equation is usually rewritten as  

                     x=g(x),                    (1) 

where 

(i) there exists [a,b] such that g(x)a,b] for all 

xa,b], 

(ii) there exists [a,b] such that |g
'

(x)|L<1 for 

all xa,b]. 
Considering the following iteration scheme 

 

 xn+1=g(x
n
),n=0,1,2, (2) 

and starting with a suitable initial approximation x
0
, 

we built up a sequence of approximations, say {x
n
}

, for the solution of nonlinear equation, say . the 

scheme will be converge to , provided tha 

(i) the initial approximation x
0

 is chosen in the interval 

[a,b], 

(ii) |g
'

(x)|<1 for all xa,b], 

(iii) ag(x)b for all xa,b]. 
 

It is well known that the fixed point method has first order 

convergence. 

Shin et al. described a new second order iterative method for 

solving nonlinear equations [18] extracted from fixed point 

method by following the approach of [8] as follows: 

If g'(x)1,we can modify (1) by adding 1 to 

both sides as: 

x+x=x+g(x), 

                  (1+)x=x+g(x), 

which implies that 

( )
( )

1

x g x
x g x






 


               (3) 

In order for g

(x) to be efficient, we can choose  

such that g
'

(x)=0,we yields 

                    =g'(x),  

so that (3) takes the form 

                  x= 
-xg

'
(x)+g(x)

1-g
'
(x)

. 

For a givenx
0

, we calculate the approximation solution x
n+1

, 

by the iteration scheme 

              1

'( ) ( )
, '( ) 1.

1 '( )

n n n
n n

n

x g x g x
x g x

g x


 
 


   

This is so-called a new second order iterative method for 

solving nonlinear equations, which converges quadratically. 
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Table: Comparison of FPM and NFPIM 

Method N 
fN   

1| ( ) |nf x 
  

1nx 
  

( ) ln( 2), ( ) 2 xf x x x g x e       

0 2.2x    

FPM 32 32 5.410786e-30 2 120028238987641229484687975272 

NFPIM 4 12 1.497263e-51 2 120028238987641229484687975272 

3 2 10
( ) 4 10, ( )

4
f x x x g x

x
  


  

0 1.5x    

FPM 34 34 6.189210e-30 1 365230013414096845760806828982 

NFPIM 4 12 6.592144e-46 1 365230013414096845760806828982 

2 2( ) 3 2, ( ) ln( 3 2)xf x x e x g x x x         

0 0.8x    

FPM   Diverged  

NFPIM 6 18 4.911909e-46 0 257530285439860760455367304937 

1

3 2 2 3( ) 3 3, ( ) (3 3 )f x x x x g x x x        

0 1x   

FPM 24 24 9.368499e- 30 1 732050807568877293527446341506 

NFPIM 5 15 6.239681e-42 1 732050807568877293527446341506 

3 2 2 31 1
( ) 4 8 8, ( ) (1 )

2 8
f x x x x g x x x         

0 1.9x    

FPM 97 97 5.570340e- 30 -2.0000000000000000000000000000 

NFPIM 5 15 1.039840e-50 -2.0000000000000000000000000000 

 

During the last century, the numerical techniques for solving 

nonlinear equations have been successfully applied (see, e. g., 

[2-19] and the references therein). 

Theorem 1.[8]  

Suppose ( ) [ , ]pg x C a b .  If
( ) ( ) 0kg x   ,  

for 1,2,..., 1k p    and 
( ) ( ) 0,pg x     

then the sequence { }nx   is of order p  .  

In this paper, we presented a new fixed point iterative 

method for solving nonlinear functional equations having 

(NFPIM) convergence of order 2 extracted from fixed point 

iterative method for solving nonlinear equations motivated by 

the technique of Fernando et al. [11]. The proposed new fixed 

point iterative method applied to solve some problems in 

order to assess its validity and accuracy. 

2  Main results 

Let f:XRR for an open interval X is a scalar 

function and consider that the nonlinear equation 

f(x)=0 (or x=g(x)) ,  

where g(x):XRR,   

then, we have a new second order iterative method [18] 

       1

'( ) ( )
, '( ) 1.

1 '( )

n n n
n n

n

x g x g x
x g x

g x


 
 


     (4) 

 

 

By following the approach of Fernando et al. [11], we 

develop a new fixed point iterative method by replacing 

g
'
(x

n
) by harmonic mean 

2g
'
(x

n
)g

'
(v

n
)

g
'
(x

n
)+g

'
(v

n
)
 as follows: 

       x
n+1

=g(x
n

)+ 

2g
'
(x

n
)g

'
(v

n
)(g(x

n
)-x

n
)

g
'
(x

n
)+g

'
(v

n
)-2g

'
(x

n
)g

'
(v

n
)
,    (5) 

                    v
n

=g(x
n

). 

3  Convergence Analysis 

Theorem 3.1 Let f:XRR  for an open interval X and 

consider that the nonlinear equation f(x)=0 (or x=g(x)) has a 

simple root X, where g(x):XRR be sufficiently smooth 

in the neighborhood of ; then the convergence order of new 

fixed point iterative method given in (4) is at least two. 

Proof. 

To analysis the convergence of new fixed point iterative 

method (5), let 
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2 '( ) '( )( ( ) )
( ) ( ) ; '( ) 1

'( ) '( ) 2 '( ) '( )

( ).

g x g v g x x
H x g x g x

g x g v g x g v

v g x


  

 



  

Let  be a simple zero of f and f()=0 (or g()=), then we 

can easily deduce by using the software Maple that 

H(a)=a,  

H
'
(a)=0,  

H
''
(a)= 

g
'
(a)g

''
(a)

-1+g
'
(a)

.       (6) 

Now, from (6) it can be easily seen that H
''
(a)¹0 , then 

according to theorem 1, new fixed point iterative method (5) 

has second order convergence. 

4  Applications 

In this section we included some nonlinear functions to 

illustrate the efficiency of our developed new fixed point 

iterative method (NFPIM). We compare the NFPIM with 

Fixed point method (FPM) as shown in Table given at the 

end.  

Table: (at the end) Shows the numerical comparisons of new 

fixed point iterative method with Fixed point method. The 

columns represent the number of iterations N and the number 

of functions or derivatives evaluations N
f
 required to meet 

the stopping criteria, and the magnitude |f(x)| of f(x) at the 

final estimate x
n

. 

 

5  CONCLUSIONS 
A new FPIM for solving nonlinear functions has been 

established. We can concluded from table that 

1. The new FPIM has convergence of order two. 

2. By using some examples the performance of NFPIM is also 

discussed. The NFPIM is performing very well in comparison 

to FPM as discussed in the table given above.  
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